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PetTrack: Tracking Pet Location and Activity Indoors

ABSTRACT
Tracking a pet’s location and activity indoors is of peak in-
terest to pet owners who want to feel connected to their pet
and to pet owners who are concerned for their pet’s well-
being. Today, such tracking is performed using pet cameras.
However, cameras need to be installed in every room acces-
sible to the pet, do not work well in the dark, and generate
a tremendous amount of data. In this paper we develop an
indoor localization and pose detection system for pets using
ultra-wideband (UWB) radios and an accelerometer affixed
to the pet’s collar. We also develop a new message format
for UWB packets to carry accelerometer data. We create
a pose-estimation logic to detect the pet’s pose using the
accelerometer data, and develop a functional mobile applica-
tion that shows where the pet is and their activity. We believe
this cost-effective and efficient new way of tracking a pet
indoors will inspire others to extend this research further.

1 INTRODUCTION
Monitoring pets in indoor spaces is predominantly performed
through pet cameras today. Indeed cameras offer direct view
of our pets and pet-owners enjoy the connection they feel
with their pets even when the owners are away from home.
However, cameras are required to be placed in every room
(and sometimes several cameras are required in each room),
cameras consume a very high data bandwidth for stream-
ing and storage, and cameras have known to cause privacy
risks due to the likelihood of them being hacked. In this
work, we ask these questions: Is it possible to track a pet’s
activities using body-worn sensors and wireless localization
instead of cameras? In answering this question in the affir-
mative, we have created PetTrack, an ultra-wideband (UWB)
localization solution for tracking a pet’s indoor location, and
monitoring the pet’s activity. The system comprises of a set
of UWB anchors installed in the indoor space, and a UWB
device worn by the pet, on the collar or a harness. The UWB
device is also equipped with an accelerometer to detect the
pet’s posture and infer activities. Our custom platform also
allows adding more sensors to the collar, including micro-
phones, whistles, etc. for better monitoring and management
of the pet’s activities.
But before we describe the platform and our system de-

sign for PetTrack, it is important to motivate the features
enabled by PetTrack and its advantages over a camera-based
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solution. (1) PetTrack directly provides the coordinates of
the pet inside an indoor space. This enables simple queries
such as “how much time does my pet spend in the living
room?” The analysis required to answer such a question is
minimal compared to the analysis needed by a camera-based
system. Thus, PetTrack provides a simpler, less compute-
intensive solution to pet-location analytics. (2) PetTrack uses
the orientation data measured from the collar device to de-
duce the pet’s pose, which is crucial in exercise and weight
management for pet physical therapy, and for monitoring
general pet health. While we have not achieved fine-grained
pose estimation, we are able to distinguish between sitting,
standing, walking, and sleeping poses. Pet-pose analytics is
thus greatly simplified compared to a camera-based system.
(3) The data bandwidth required to transmit the pet’s loca-
tion and pose information over the network is quite small.
This saves home Internet data usage and mobile cellular data
usage when accessing the information. A vast majority of
video data captured by cameras is never used. By distilling
out only the most relevant information through location
and orientation sensors, PetTrack takes a minimalist data
approach. (4) Wireless signals can penetrate through walls,
furniture, etc. Therefore a small number of UWB anchors
suffice to cover the entire home. In contrast, camera coverage
is limited to a single room, requiring several cameras to be
installed in a typical home. Thus, PetTrack requires minimal
hardware to track a pet.

In this work, the core principle for pet localization is wire-
less distance measurements. The ultra-wideband radio on the
pet’s collar performs wireless ranging with fixed anchors in
the environment. The pet’s location is solved using trilatera-
tion, which involves converting the time of flight between
each anchor and the collar device to distances and using
those distances to each anchor to determine the indoor lo-
cation of the pet. The calculated location of the pet is then
periodically sent to a cloud server, from where it is available
to the pet’s owners. At the same time, an accelerometer on
the collar device piggy-backs its data on the UWB packets.
Estimations of the pet’s pose are made using the accelerom-
eter readings, coupled with the pet’s movement data from
the wireless ranging. An aggregating compute device in the
home, a raspberry pi in our prototype, performs the trilat-
eration and the pose estimation. This aggregating device is
connected to the Internet over the home network and keeps
a cloud service informed about the pet’s whereabouts.

1
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Our contributions are:

(1) We introduce a methodology for localization of a pet
in an indoor environment using UWB ranging.

(2) We introduce a system that combines accelerometer
data with UWB ranges to determine a pet’s pose

(3) We introduce a mobile application that renders the
pet’s whereabouts and pose in real-time.

2 BACKGROUND ON SENSORS
PetTrack primarily relies on two sensors: (a) ultra-wideband
radios for distance measurements, (b) inertial sensors for
orientation measurements. In this section, we will describe
background material on sensors themselves, including the
standard ways of using them. In the next section, we will
delve into our specific improvements to the state-of-the-art
localization techniques.
Ultra-wideband Localization: The core idea in wireless
localization is measurement of the amount of time it takes for
wireless signals to go from one device to another. Since wire-
less signals travel at the speed of light (3×108𝑚/𝑠), this time
of flight for wireless signals must be computed at nanosecond
precision. A challenge in precise time of flight measurement
is in obtaining exact arrival times. For a narrow-band sig-
nal, the arriving signal rises above the noise floor rather
slowly, making it difficult to tell what the exact arrival time
is. Hence, we need to use signals with large bandwidths—
ultra-wideband signals. Such signals rise quickly above the
noise floor within a few picoseconds and therefore result in
highly precise arrival time estimates.

However, accurate estimation of arrival times, while nec-
essary for precise distance measurements, is not sufficient.
We also need tight synchronization between the clocks of
the two devices involved in the message exchange. Intelli-
gent ranging protocols have been devised to overcome this
challenge. For example, the alternative two-way ranging [11]
relaxes the constraints of response time through a crafted
formulation that naturally removes the clock drift errors,
allowing more flexibility to the participating devices and
finding wide adoptions [7].
Inertial Sensors: Ego-centric tracking of the orientation
can be performed using inertial sensors. Typically this in-
cludes accelerometers, gyroscopes, and magnetometers. Un-
fortunately, indoor spaces are not amenable to the use of
magnetometers since various electrical and electronic com-
ponents in a household frequently corrupt the magnetometer
readings. Gyroscopic movements only measure the angular
velocity, which in this context does not provide much rele-
vant data without frequent re-calibration. Hence, we only
focus on the use of accelerometer output.

UWB Collar

Anchor 1 Anchor 2 

Anchor 3Anchor 4

Figure 1: PetTrack System design includes several fixed UWB
anchors in a home, with the pet wearing a UWB collar.

3 PETTRACK SYSTEM DESIGN
Ultra-wideband (UWB) localization techniques have existed
for several years now. Therefore, it might seem that localiza-
tion for any application can simply use the existing UWB
ranging and trilateration methods. However, tracking a pet’s
location and capturing their pose will need several modifica-
tions to the standard two-way ranging scheme [5]. As shown
in Fig. 1, we install a small number of anchor devices in the
pet’s home, and affix a client device to the pet’s harness or
collar. We now present the modifications made in PetTrack
below.

3.1 One to Many TWR Ranging
Serially performing two-way ranging (TWR) with every an-
chor and the pet’s UWB device is a slow process since ev-
ery individual ranging operation takes time. We find that
pipelined two-way ranging mitigates this issue by reusing
just a single message transmitted by the UWB to behave as
a trigger for all anchors to respond.
More specifically, in PetTrack, the pet’s wearable device

performs a pipelined two-way ranging[4] with the deployed
anchors in the indoor environment. The pet’s wearable de-
vice initiates TWR by sending a POLL message, which con-
tains a schedule for the anchors’ transmissions. Upon receiv-
ing this POLL message, the anchors transmit the RESPONSE
messages in their respective slots dictated by the schedule.
The pet’s wearable device replies with a single FINAL mes-
sage (see Fig. 3). The POLL, RESPONSE, and FINALmessages
contain the receive and transmit timestamps necessary for
calculating the Time-of-Flight(ToF) between the pet’s wear-
able device and each anchor. Note that the schedule can be
configured by the user, or through a one-time neighbor dis-
covery protocol at system initiation. We program it based
on the hard-coded anchor IDs.

3.2 Eavesdropper based Location Solver
Conventionally, in TWR, each anchor measures its ToF from
the pet’s wearable device, and all the ToF measurements are
then collected by a central processor where a localization
solver produces a location result. However, doing so requires

2
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Figure 2: Illustration of Double Buffering

Pet-Wearable Responders

Propagation 
Delay (𝜌𝜌)

Schedule

Figure 3: Pipelined TWR between the Pet’s Wearable Device
and Anchors.

additional hardware such as a wired backbone network, or
dedicated ToF collection time slots, which reduce the local-
ization rate. We propose an alternative approach where an
eavesdropping device at the central processor overhears the
TWRmessages and computes the ToFs between the pet wear-
able device and the anchors. The only requirement is that all
the receive and transmit timestamps at the anchors and the
pet wearable device are embedded in the TWR messages, a
requirement of the conventional TWR. However, in addition,
the anchor’s receive timestamp of the FINAL message also
needs to be transmitted, which can be embedded in its next
RESPONSE message. Once the ToF measurements are avail-
able at the eavesdropper, the central processing unit then
computes the pet’s location using a least-sqaure solver [10].

3.3 Accelerometer Data in UWB packets
In addition to performing TWR, the pet wearable device con-
tinuously collects the 3-axis acceleration data from the ac-
celerometer on the pet-wearable device. To keep the compu-
tation complexity low, raw accelerometer data is transmitted
to the central processing unit for pose classification. We ex-
ploit the existing TWR messages to carry the accelerometer
data. To deal with the asynchronous nature of data collection
and communication, we use a double buffering technique
(see Fig. 2) to handle the sampled accelerometer data on the
pet’s wearable device: the data samples are stored in one
of two buffers, and when it is filled, this buffer is marked
as "Ready-to-Transmit" while the newer samples are stored

in the other buffer; before transmitting the TWR messages,
the pet wearable device checks the buffer status and will
embed the entire data buffer in the TWR message if one of
the buffer is marked as “Ready-to-Transmit”. Note that both
POLL and FINAL messages transmitted by the pet wearable
device can carry the accelerometer data. This ensures the
same length of accelerometer data is received by the pose
classifier, making the processing simpler. The TWR message
structure is shown in Fig. 4.

POLL ID TX TS Loc(x, y) Slot1 Slot2 …Num
Slots

RESP ID TX TS Loc(x, y) Poll Rx Ts

FINAL ID TX TS Loc(x, y) Resp 
ID1

Resp 
RX TS1

Num
Slots …

TOKEN ID TS To ID Acc2
(t, Ax, Ay, Az) …

Acc1
(t, Ax, Ay, Az)

Acc2
(t, Ax, Ay, Az) …

Prev Final 
RX TS

Poll Rx 
Ts

Acc1
(t, Ax, Ay, Az)

Acc2
(t, Ax, Ay, Az) …

Acc1
(t, Ax, Ay, Az)

Acc2
(t, Ax, Ay, Az) …

Figure 4: Packet structure for TWR message exchanges.

3.4 Pose Inferencing
Understanding the pose of the pet can help us gain insights
into the activities that a pet performs throughout the day. To
detect the pet’s motion, an accelerometer has been integrated
on the pet’s wearable device. The 3-axis acceleration data is
collected at 50𝐻𝑧 and is processed by the central device for
pose classification. To visualize how the acceleration data can
be used for pose inference, we show a 3D scatter plot( Fig. 5)
from our measured data, where different poses manifest as
distinct clusters.
Machine learning techniques have been widely used for

classification tasks. For its simplicity and wide application,
we use the K-nearest neighbor(KNN) classifier to let the
system automatically determine the pose of the pet. The
accelerometer data is taken in windows of a fixed size. Be-
cause of our double buffering technique, the accelerome-
ter data is always taken at a constant rate and therefore
doesn’t contain any jumps in time. To remove the data re-
lated to movements and transitions between poses, we first
check each windowed signal based on its variance to only
retain the data that can be classified as static poses (with
low variance). Then the windowed signal is vectorized into
[𝐴𝑥1, 𝐴𝑦1, 𝐴𝑧1, ..., 𝐴𝑥𝑛, 𝐴𝑦𝑛, 𝐴𝑧𝑛] and fed into the KNN clas-
sifier for classification.

3.5 Cloud Storage
To render read-time data on the app and persist it for later
use for offline analysis we use Firebase as a cloud storage plat-
form. Cloud storage is a common Cloud Computing model to
store data on the Internet through various cloud computing
service providers who manage and operate data storage as
a service. For our work, we use Firebase which is a simple,
powerful and cost-effective service built by Google to scale.
To capture data in real time, we used Firebase Real-Time
Database which stores data as a JSON and synchronizes it in

3
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Figure 5: Visualizing the clusters of accelerometer measure-
ments in different poses

real-time to every connected client. The most important rea-
son why we use Firebase is that we can build cross-platform
apps with iOS, Android, JavaScript and all of our clients share
only one real-time database instance and automatically re-
ceive updates with the newest data.

3.6 Mobile Application
Since the focus of this work is on the techniques for local-
ization of the pet, we have created only a minimal mobile
application. Currently, the underlying floorplan map is fixed,
and the anchor locations are manually inputted.

4 IMPLEMENTATION
We have created a custom-built PCB that houses a UWB chip,
and an accelerometer. A cortex M0 microcontroller on the
PCB runs the ranging code by interfacing with the Decawave
DWM1000 UWBmodule and samples the accelerometer data
from an ADXL335 chip using the microcontroller’s ADC.
This device is also provisioned with a piezoelectric buzzer,
an SDCard, and a real-time clock. Code is uploaded to the
device via a micro USB port. The device can be powered
either through a micro-USB port or via a battery. We use
copies of this device as the pet’s wearable device where all
of its sensors are utilized, as well as anchors mounted on the
wall at various places in the house. Anchors only use the
microcontroller controlled UWB module, and are powered
via a USB charger. The pet’s wearable device is powered
using a 1200mAh LiPo battery. The eavesdropper is another
copy of the same device, but only the UWBmodule is used as
a gateway between the UWB data exchanges and the Rasp-
berry Pi which finally computes the pet’s location and pose
information. The eavesdropper UWB device is directly con-
nected with a RaspPi 4 and prints out all observed packets
on its serial interface. The Rasp Pi captures this information
via a USB-to-Serial driver and runs a python program to

Anchors mounted on the walls
Eavesdropper 
+ RaspPi

Pet-Wearable

Acc

UWB

SDCard

BuzzRTC Battery

Figure 6: Our experimental setup using our custom wireless
ranging and accelerometer devices.

continuously deduce the pet’s location. The UWB packets
originating from the pet’s wearable device also include ac-
celerometer readings which are processed at the Rasp Pi in
real-time to infer the pet’s pose. Fig. 6 shows how the anchors
were mounted on walls of a two bedroom apartment, how
the pet-wearable device was mounted on a pet dog(Fig. 7)1,
and the eavesdropper+Raspberry Pi combination which cap-
tures all exchanged data. Separating our the RaspPi from the
pet-wearable device allowed us to keep the weight of the
pet-wearable device to a minimum at about 17.886g.

Figure 7: Pictures of the Pet’s Wearable Device

Obtained information at the Raspberry Pi is transmitted
to a Firebase cloud server. A python application on the eaves-
dropper’s Raspberry Pi device collects all the localization
and accelerometer data in one place. This data is obtained
over the serial port by the Raspberry Pi. The placement of
the anchors in the house is assumed to be known. To store
the obtained data on cloud, we use Firebase. It’s data config
contains apikey, authodomain, databaseURL, and storage-
Bucket. We push all the obtained raw information to the
firebase database. An Android app obtains this information
and converts it to an animated pet character superimposed
1This project has obtained the required permissions from both the institu-
tional review board and the Institutional Animal Care and Use Committee

4
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Sit Sleep Stand
Sit 100% 0 0

Sleep 0 100% 0
Stand 0 6.9% 93.1%

Table 1: Normalized Confusion matrix of KNN pose classifi-
cation

on the home’s floor plan. The user is expected to provide the
floorplan beforehand, and is also expected to mark the loca-
tions of the anchor devices on the floorplan. At this time, our
mobile app does not allow marking the anchor locations on
the mobile phone, but this feature is planned for the future.
Our implemented system runs at about 1 − 2𝐻𝑧 end-to-

end given the delays introduced by the Firebase cloud server.
Raw location estimates are produced at the RaspPi at a rate
of 10𝐻𝑧 and we expect that a dedicated cloud service in the
future will improve the end-to-end update rate.

5 EVALUATION
We evaluate PetTrack on a dog2 of breed tiny bernedoodle
in a 1350 sq.ft. apartment. The pet’s wearable device was
attached to the back of the harness behind the subject dog’s
neck. We evaluate the localization and pose inference accu-
racy with the subject dog being instructed to stay in static
poses. Then we show a visualization of activity tracking of
the subject dog freely moving around. The anchor locations
are obtained using a floorplan and a laser ranger.

5.1 UWB Localization
The subject dog wears the harness equipped with the pet’s
wearable device, and is instructed to remain in a certain static
pose at a certain location while localization data is recorded.
In Fig. 8, the scatter plot shows a visualization of the local-
ization results. For quantitative analysis, we compute the
localization error and plot the cumulative distribution func-
tion (CDF) in Fig. 9 compared to the centroid tag location.
The subject dog is in Sleep pose at P1-P2, Sit pose at P3-P4,
and in Stand pose at P5-P7. Overall, at most locations while
under difference poses, the 75𝑡ℎ percentile localization error
is less than one meter.

5.2 Pose Inference
The subject dog is instructed to remain in different static
poses (Sit, Sleep, Stand) during training and testing. The real-
time accelerometer measurements are used to generate the
predicted pose labels. The classification accuracy is 98.6%,
and the confusion matrix is shown in Table 1. This result
shows our classifier is reliable when the pet remains in the
same pose.
2Our study has been approved by our institution’s IACUC and IRB.

Anc
P1
P2
P3
P4
P5
P6
P7

Figure 8: Scatter plot of localization results at 7 different pet
locations (P1-P7)

0.0 0.5 1.0 1.5 2.0 2.5
Localization error(m)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F P1

P2
P3
P4
P5
P6
P7

Figure 9: CDF of localization error at pet locations P1-P7.

5.3 Free Moving Experiment
In this experiment, the subject dog moves freely in the test
environment, while the localization and pose inference data
are recorded. The subject dog’s movement is videotaped for
obtaining its ground truth position and activity. To show
the performance of the classifier, we do not consider the
data where the ground truth is non-static. Fig. 10 shows
the inferred pose and the ground truth pose over time. The
classification accuracy is 88.4%.

5
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Figure 10: Free Moving pose inference over time

6 RELATEDWORK
The area of pet analytics is an upcoming field. This is also
reflected by the fact that pet ownership is on the rise—71%
of households have pets in 2021 compared to 67% in 2019[1].

Outdoor localization of pets has been enabled using a GPS
tracker on the pet’s collar for tracking lost pets [13]. How-
ever, GPS based solutions are not reliable for indoor environ-
ment. In recent years, indoor localization solutions [6, 15]
have shown tremendous success, especially the UWB sys-
tems [4, 12], achieving decimeter-level accuracy. UWB track-
ing has seen applications in first responders [4], robots [8],
and mobile phones [9]. But using indoor localization for
tracking and understanding pets’ activities have been miss-
ing in literature.
Besides location tacking, pose tracking is also crucial for

understanding the pets’ activity and overall health. Camera
and convolutional neural network (CNN) based pose track-
ing has enabled dog pose recognition and reconstruction [14].
However, continuously running a CNN on live visual data is
very computationally expensive and takes a lot of processing
power, and the accuracy and reliability of the pose estimation
is highly dependent on the placement of cameras and object
occlusions. Accelerometer based pose recognition is a much
more cost effective, data efficient method that have demon-
strated high classification accuracy [2, 3], which inspired us
to adopt accelerometer as well.

7 DISCUSSION AND FUTUREWORK
How different is pet tracking from tracking people?
Typically, when people use localization technology, they
wish to track their own location. However, in pet tracking,
pet-owners need to know the location of their pet. Therefore,
the correct underlying algorithms must be selected that sim-
plify external knowledge of the pet’s location. Furthermore,
tracking the pose of a pet is simpler than that of a human
being given the typically upright posture for humans. Simi-
larly, pets get easily occluded by furniture items in an indoor
setting. Therefore, obtaining accurate ranges can become
challenging.

Can more than one pet be tracked? It is possible to mod-
ify the PetTrack ranging protocol to accommodate a few
pet-wearable UWB devices. However, this solution cannot
support a large number of pets, such as in a pet-daycare
facility. A TDoA version of the protocol will be required for
supporting a very large number of pets.
Can PetTrack be used to track activities like eating,
drinking? Can it be used to measure calories burned?
Using the accelerometer data and the knowweight and breed
of the pet, we can determine rate of calorie burn. Right now,
our model is pet-dependent, which means the model has
to be trained to detect different types of activity for every
pet that uses PetTrack. It is possible to use more domain
knowledge of different pets and more advanced machine
learning techniques to make this into a pet independent
model in the future.
Canwe improve the pose inference accuracywith other
sensors? It’s possible to fuse accelerometer data with other
sensor inputs, such as gyroscope, UWB, light sensor, etc. to
improve the inference accuracy. For example, we observed
that for a dog laying on its belly and standing on its legs,
the accelerometer data is very difficult to distinguish; but
with a light sensor under the collar, it will help differentiate
whether the dog is touching the floor or not.
Can PetTrack be used to teach pets and reinforce what
their owners teach them? It is possible to define some
indoor spaces as being off-limits for the pet. If, for example,
the pet attempts to enter into a designated off-limits space,
an ultrasonic sound can be emitted, alerting the pet of the
off-limits rule and discouraging the pet from entering certain
rooms, even rooms that are irregularly shaped.

8 CONCLUDING REMARKS
PetTrack is a pet tracking system that allows the pet owners
to monitor pets’ activities through real-time location and
pose tracking. PetTrack demonstrated reliable localization
and pose inference performance, which we believe will en-
able a wide spectrum of pet-centered applications.
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